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ABSTRACT

The primary objective of this study was to build a

mathematical model to predict the probability of a target

moving according to a two-dimensional random tour model

avoiding detection (i.e., surviving) to some specified

time , t

.

This model assumes that there is a stationary searcher

having a "cookie-cutter" sensor located in the center of the

search area.

A Monte-Carlo simulation program was used to generate

the non-detection probabilities. The output of this program

was used to construct the required mathematical model.

The model predicts, and simulation supports^ that as the

mean segment length of the random tour becomes small with

respect to the square root of the area size, the probability

of non-detection approaches that previously obtained for a

diffusing target. In the opposite extreme, the probability

of non-detection approaches the general form of Koopman's

random search formula.
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I. RANDOM TOUR MODEL

A. INTRODUCTION

The main objective of this thesis was to construct and

test an experimental mathematical model to predict the

probability that a target moving according to a two-

dimensional random tour will avoid detection to time t by a

fixed sensor.

B. DESCRIPTION OF RANDOM TOUR MODEL

1. The Searcher Location

The searcher is assumed to be located in the center

of a square search region of area A. This location is held

fixed during the search period. The searcher has a detec-

tion capability over a disk of radius R. (See Figure 1.1).

The detection probability for a target inside this

disk is 1 and it is outside. The searcher thus has a

"cookie-cutter" sensor with detection range R. [Ref. 1]

2. The Target Starting Position

The target's starting position is uniformly

distributed over the square search region A.

3. Motion of the Target

The target moves randomly over the area A according

to a random tour which reflects off the area boundaries.

[Ref. 1]
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Figure 1.1 Random-Tour Model
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The target track is a connected sequence of line

segments. The direction, or target course 0, for each

straight segment is selected from an independent uniform

distribution between and 2ir radians.

The length of time, T, the target spends on each leg

(assuming no reflection off the area boundaries) is selected

from an independent exponential distribution with mean 1/x.

The term X is the rate of course change (again ignoring

reflections)

.

4 . Detection

Detection occurs the first time the target enters

the searcher's detection disk; that is, when the distance

between the target and the center of A is less than or equal

to R.

C. NECESSITY OF SIMULATION

An analytic expression for the probability density of

the target's position after a random tour of time length t

was derived in [Ref. 2]. Given the target's initial

position at the origin of a two dimensional coordinate

system, this expression is:

g(x,y,t) = [e
Xt

/2* (Vt)
2

] { 6 (r-1 ) + [At/ ^l-r
2 ]exp(xt |l-r

2
)} .

(1.1)

where

V = Target speed (nautical miles per hour)

11



x = Rate of course change (1/hour)

t = Time (hours)

2 2
2 = x + y

2
(Vt)

Z

6 = Dirac 6-function

x,y = Components of the target's new position.

Expression (1.1) does not account for boundary effects

and it considers the initial position of the target to be

the origin. Adding the effects of boundary reflection and

assuming the initial starting position to be uniformly

distributed over A significantly complicates the calculation

of g (x,y,t)

.

In addition, it was the purpose of this work to find the

probability of non-detection to time t (PND(t)), not the

probability density function for the target. Thus, it was

necessary to use simulation to attack this problem.

D. SIMULATION MODEL OF RANDOM TOUR

A Monte-Carlo simulation computer model (called Random

Tour Simulation or RATSIM) was used to estimate PND(t) for

the random tour model. This program was written in FORTRAN

and designed to run on the IBM 3033 at the Naval

Postgraduate School. It uses the International Mathematical

and Statistical Library (IMSL) packages GGUBS to generate

12



uniform random variables and GGEXN to generate exponential

random variables.

1. Inputs

• Radius of detection disk R, in nautical miles (nm)

.

2
• Area size A, in square nautical miles (nm ).

• Target speed V, in nautical miles per hour (nm/hr)

.

• Rate of course change X, in 1/hour (hr )

• Number of replications (REP).

• Detection period (TMAX) , in hours (hr)

.

• Time increment AT, in minutes.

2. Functioning of the Program

(i) At the start of each replication, the initial
starting position of the target is drawn from a

uniform distribution over the area A. The course 6

is drawn from a uniform distribution on (0, 2n )

.

(ii) The course is changed after a random time leg T
drawn from an exponential distribution with mean
1/X.

(iii) After each time increment At, the new position of
the target is calculated from:

Xnew = Xold + V • At • sin e

Ynew " Yold + V • At • cos 6

where

X
new' Ynew

= coor<3i nates °f the new position at
the end of At.

x~i^/ Y~i^ = coordinates of the old position atold old . , , . . r . .

r
the beginning of At.

13



Also, the distance D between the new position of the
target and the center of the searcher disk is
calculated from:

D
2

= (X - X )

2 + (Y - Y )

2

new ser' new ser' •

where

X , Y = coordinates of the center of theset ser , . j-isearcher's disk.

(iv) The replication terminates if: D <^ R or if the
detection period (TMAX) is over. Then a new
replication begins. The process continues until the
specified number of replications is reached.

(v) Two counters are used, one to determine the current
time t, and the other to count the number of
replications in which detection occurs.

3. Design of the Experiment

Different time increments At, varying from 1 minute

up to 10 minutes, were tested with RATSIM and 3 minutes was

accepted as a reasonable compromise. For smaller At, the

execution time of the program increased unacceptably . For

larger values, it was possible for the simulated path to

jump across a significant portion of the detection disk

without achieving detection, even though the line segment

connecting two successive discrete positions of the target

was partly on the disk [Ref. 3]. This will reduce the

detection rate, especially for large V. However, as

illustrated in Figure 1.2, PND(t) can be relatively

insensitive to At less than 10 minutes when the problem

14
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parameters are appropriate for antisubmarine warfare (ASW)

search.

It was decided to conduct 2400 replications for

each RATSIM experiment. This resulted in the standard

deviation of the simulated PND(t) being no greater than

0.25/2400 0.0102.

Also the maximum time allowed for detection (TMAX)

was set at 100 hours. This was selected to allow PND(TMAX)

to be near for all tested values of problem parameters.

4 . Boundary Effects

When the target encounters a boundary, a reflection

is made to keep the target inside the search area A. The

target position after reflection is determined as follows:

In Y-Direction :

If Y < then Y becomes (-Y) ;

If Y > L then Y becomes (2L - Y) •

where

L = length of a sid e of the square search area A;
i.e., L = J A .

In X-Direction :

The target reflects in the X-direction in a similar
manner

.

The target course 6 changes after reflection as

follows

:

16



At Y = or Y = L: 6 bcoraes (

2

tt - Q) /

At X = or X = L: 6 becomes ( tt - e ) •

Thus, "the angle of incidence equals the angle of

reflection." The reflection process is illustrated in

Figure 1.3.

5. Output

At each time t, the primary simulation output is the
NT

- N
Q

ratio —r: where

N« = number of replications giving a detection by time t,

and

N = total number of replications used in Monte-Carlo
simulation

.

This ratio is the simulated probability of non-

detection by time t, PND(t).

17



Figure 1.3 Reflection Process
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II. RELATIONSHIP BETWEEN THE RANDOM TOUR AND
DIFFUSION MODELS

A. DESCRIPTION OF DIFFUSION MODEL

In the diffusion model considered here, the target moves

randomly over a square search area A according to Brownian

motion with a diffusion constant D (units: area/time).

Perfect reflection occurs at the area boundaries.

The target starting position is uniformly distributed

over A. For any time interval of length At which does not

contain a boundary reflection, the components of the

target's position along the X and Y axes suffer increments

which are each distributed independently and normally with

mean and variance D At.

A searcher having a "cookie-cutter" sensor with

detection range R is located at the center of the search

region.

Detection occurs whenever the range between the searcher

and the target becomes R or less.

B. RELATIONSHIP WITH RANDOM TOUR MODEL

In [Ref. 4] it is shown that as the rate of course

change X for an unconstrained random tour gets larger such

2
that V /x = constant, then the random tour can be

approximated by a diffusion model with a diffusion constant

19



2D = V /x. In this case, the two models are said to be

"equivalent"

.

Also, it is argued in [Ref. 5] that the detection

probability predicted by a constrained (by reflecting

boundaries) diffusion model represents an upper bound to

that predicted by the equivalent constrained random tour

model. In other words, the non-detection probability

predicted by a constrained diffusion model is a lower bound

to that predicted by the equivalent constrained random tour

model. This is reasonable since it is known [Ref. 4] that

the target in an unconstrained diffusion model will "on

average" move a greater distance from the origin than a

target conducting the equivalent random tour. Consequently,

the diffusing target would be expected to encounter a

stationary searcher more quickly.

These observations, as regarding the relationship

between random tour and its equivalent diffusion, were

supported by plotting the results of two simulation

programs: RATSIM and DIFSIM.

DIFSIM (diffusion simulation) is a Monte-Carlo search

simulation for a diffusing particle developed by Sislioglu

[Ref. 5].

To generate the results displayed in Figure 2.1, the

2
parameters A and R were held fixed at 1000 nm and 28.2 nm

respectively for both programs. The diffusion constant D

20
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used with DIFSIM was 100 nm 2
/hr. In RATSIM five different

2 2
(X,V) pairs were selected such that V /x = 100 nm /hr for

each pair. The values of (X hr , V nm/hr) were (0.25, 5),

(1, 10), (4, 20), (9, 30), and (16, 40).

It is clear from Figure 2.1 that, in this case as the

ratio of the characteristic length of the search area to the

mean segment length of the random tour ( fA/V(l/x) gets

larger the non-detection probability curves for a random

tour model asymptotically approach that of the equivalent

diffusion model.

C. MATHEMATICAL MODEL OF DIFFUSION

Sislioglu [Ref. 5] established a mathematical model to

predict the probability of detection of a target moving

according to the diffusion model (described in section A).

This mathematical model is given by:

PD(t) = 1 - (1 £-) exp [
—

]

It was later modified by Eagle [Ref. 3] to the following

form:

D 2 -24.7 RDt
ttRPD(t) - 1- (1 -T-) exp [ ]

(A - ttR )

where

:

22



PD(t) = probability of detection at time t in hr

2
D = diffusion constant, nm /hr

R = radius of searcher disk, nm

2
A = area of search region, nm

So PND(t) can be given by:

PND(t) = 1 - PD(t)

PND(t) = (1 - —-) exp [

-24.7 RDt
2 15

(A - nR
Z

)

1% D
(2.1)

As stated before, PND(t) as given by (2.1) should represent

a lower bound on PND(t) as predicted by the equivalent

random tour model, and will be used later in the next

chapter as a basis to derive the mathematical model of

random tour.

For simplicity, equation (2.1) will be written in the

form:

PND(t) = « • e
Bt (2.2)

where

a = 1 - jtRJ

A (2.3)

and

23



8 = 24.7 RD

(A - TtR
2

)

1,5
(2.4)

As indicated in [Ref. 5], the diffusion constant D can

2
be approximated by V /x to get a diffusion model equivalent

to the random tour with V and x. So, if we replace D by

2V /A in (2.4) we get the approximate rate of detection for

the equivalent diffusion model in the form

B
= 24.7 RV

(A - 7rR
2

)

1,5
A

(2.5

24



III. THE ANALYTICAL MODEL FOR THE PROBABILITY
OF NON-DETECTION

In this chapter an experimental analytical model is

constructed to predict the probability of non-detection by

time t of a target moving according to the random tour model

described in Chapter I.

Simulation results from RATSIM will be used as well as

the relationship between the random tour model and the

asymptotically equivalent diffusion.

A. MODEL ASSUMPTIONS

The following assumptions are made:

1) The target starting position is uniformly distributed
over the square search area A.

2) The target reflects perfectly off the area boundaries.

3) The target moves over the area A according to a

random tour with constant speed V and rate of course
change X.

4) The searcher is fixed at the center of A.

5) The searcher detects with probability 1 all targets
with a range of R or less. The searcher never detects
targets at ranges greater than R. (That is, the
searcher has a "cookie-cutter" sensor with detection
range R [Ref . 2] . )

6) The problem ends when the target is detected.

B. CLASSIFICATION OF VARIABLES

1. The Independent Variables

2
* Search area A in square nautical miles (nm ).

25



• Target speed V in nautical miles per hour (nm/hr)

.

• Rate of course change x in 1/hour (hr )

.

• Searcher detection disk radius R in nautical miles (nm)

,

2. The Dependent Variables

• Probability of non-detection by time t, PND(t),
i.e. , PND(t) = f (A, V, R, X)

.

C. CONSTRUCTION OF THE MODEL

By plotting PND(t) versus t, as estimated by RATSIM and

with a logarithmic scale for the Y-axis, it was observed

that the resulting curves were very nearly linear with

negative slopes (see Figure 3.1).

This linear relationship on a logarithmic scale graph

suggests the following functional form for PND(t):

PND(t) = a • e
Yt

. (3.1)

In the course of this research approximately 300

simulation experiments with RATSIM were conducted. All

showed PND(t) to be approximately given by (3.1). Figures

3.2 through 3.5 are representative.

This thesis attempts to fit the simulation data and

establish values of a and y as functions of the problem

independent variables A, V, R and X.

A small subroutine was added to the main program of

RATSIM to compute a least-squares estimate of a and y. The

formulas used [Ref. 6] were:

26
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In a =

n

2_j
t
i 2_

in pND(t
i

) xzfci y~ Ui in pND(t
i
))

i=l i=l i=l_ i=l
n

"H'i
2

- 'H'i
i = l

and

Y =

n V" (t
i

In PND(t
i

) - \ tj Y~ In PND(t
i

)

i=l i=l i=l
n n

n

i = l

4
2

- «1V
i = l

where

n = number of data points used in the evaluation.

1 . Submodel for a

Since the target starting position is uniformly

distributed over the search area A, and the searcher has a

2perfect detection capability over a disk with area nR , we

expect that immediately after the search begins the

2probability of detection will be ttR /A.

If we substitute t = in equation (3.1) we get

PND(O) = a •

So,
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a = 1 - ttFT/A (3.2)

As would be expected, all simulations conducted showed

PND(0
+

) = 1 - irR
2/A

2. Submodel for y

As stated before, PND(t) predicted by a diffusion

model appears to be a lower bound to those values predicted

by the equivalent random tour model.

A study of the simulation data suggests that y in

equation (3.1) can be estimated by:

Y = Bd - e~*) (3.3)

where

is the detection rate of the equivalent
diffusion model given by equation (2.5).

is a function of the independent problem
variables A, V, R and X.

In this thesis an attempt is made to find the

functional relationship between i> and the independent

variables. It should be noted that there may be other

functional forms for y that fit the simulation data as well

or better than equation (3.3).
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3. Submodel for i|>

This submodel includes the A, R, V and X. So it can

be expected to be more complex than the submodel for a. To

simplify the problem, the relationship between ^ and each

one of these variables was investigated separately at first.

Then a combination of these separate relationships was used

to construct the required submodel for ty.

a. Relationship Between 41 and Area Size A

To obtain this relationship, the variables V, R

and x were held fixed at 10 nm/hr, 10 nm and 1 hr

2respectively. The area size A was varied between 900 nm

and 20000 nm
2

.

Each simulation run required the independent

variables A, R, V and X to be specified, and gave a best fit

for y as an output. Then from equation (3.3) we have

4- = - In (1 -
I )

• (3.4)

Substituting (2.5) into (3.4) yields

+ = -in {1 - T*(A - *R )

} . (3. 5)

24.7 RV Z

By plotting the values of i|>, calculated by

equation (3.5), versus the corresponding values of A, it was

found that a power function fit the data very well (see
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Figure 3.6). The least-squares best-fit * was found to be

given by

* = 0.0080678(A)
0.5028

This implies that

fT (3.6)

where

«" means "is proportional to".

b. Relationship Between i|i and Target Speed V

Here the variables A, R and x were held fixed at

2 -1
10000 nm , 10 nm, and 1 hr respectively. V was then

varied between 2.5 nm/hr and 25 nm/hr. The simulation

output y and equation (3.5) were used to generate the

corresponding values of i>

.

By plotting \|i versus V and fitting a power

function to the data, it was observed that

* = 8. 3357 (V)
-1.001

(See Figure 3.7). This implies that
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1

V (3.7)

c. Relationship Between and the Rate of Course
Change x

Now A, V and R were held fixed at 10000 nm 2
,

10 nm/hr and 10 nm respectively. Then X assumed the

following values: 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2,

2.5, 3, and 4 hr . The resulting best fit power function

(see Figure 3.8) was found to be

* = 0.83419U) 1.0003

This means that

4» <* X (.38)

d. Relationship Between ty and Detection Radius R

The following values were assigned to R: 2.5,

5, 7.5, 10, 12.5, 15, 20, 25, 30, and 35 nm. The other

2variables A, V and x were held fixed at 10000 nm , 10 nm/hr

and 1 hr respectively. The best fit power function was

* = 0.8423 (R)
-0.009

This indicates that i> is nearly independent of R over this

range of R values (see Figure 3.9).
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e. Summary and Conclusions

Now, we can summarize the previous relationships

as follows:

* - 1/V
/

4» « X

This leads to the following conclusion:

fA~X
* " —v~ '

Or equivalently

,

H = K • ^p # (3.9)

where K is a proportionality constant to be estimated

from the simulation data.

f. Estimation of the Coefficient K

The outputs y of 156 simulation experiments with

RATSIM were used to produce 146 sample K values. The value

of K was calculated from equation (3.9) as follows:

K = JUL
, (3.10)

fh X

where the value of \p was determined by equation (3.5).
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The 156 RATSIM experiments used to estimate K

resulted in a sample mean of 0.084 and a sample standard

deviation of 0.0016. These data suggest that with

probability 0.9, K lies in the interval [0.082, 0.087]. The

bounds of this confidence interval were the observed 5 and

95 percentile points.

The histogram and the statistical summary table

for this data are displayed in Figure 3.10.

g. Final Submodel for

By estimating the value of K and applying

equation (3.9) we can construct the final submodel for as

follows

:

* = 0.084 t|^-
. (3.11)

h. Final Submodel for y

Substituting equations (3.11) and (2.5) into

equation (3.3) we get

2

Y =
24 ' 7

!?

V
, e [1 " exp(-0.084 ^A

) ] • (3.12)
(A - TrFT)

1 *^

4. The Final Form of the Random Tour Analytical Model

Combining the final submodels for a and y allows us

to complete the random tour analytical model.
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Substituting equations (3.2) and (3.12) into (3.1)

we get

PND(t) = (1 - *R % c r
-24.7 RV t M

-T-) Exp{ o i E [1A
(A - 1TR^)

i,:3
X

exp(-0.084 &*)] }

(3.13)
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IV. VERIFICATION OF THE RANDOM TOUR MODEL

A. DIMENSIONAL ANALYSIS

From equation (3.3) it is clear that \|> must be

dimensionless . Now writing i|i as K \A X/V, we see that K also

is a dimensionless coefficient

B. LIMIT OF y AS X *

From equation (3.12) we have

Lim Y = Lim {

24,7 *V
[1 - exp(-0.084 &-^) ] J

X + X + (A - ttR
2

)

* D
X

24.7 RV 2 JT.~
D 2.1.5

(0 * 084 V >

(A - ttR )

2.0748 RV Ta" .

2 15 K '

(A - TrR^)
1,D

So if equation (3.12) is a reasonable estimate for y,

then as x RATSIM should give a best fit y given by

equation (4.1). To test this, four groups of simulation

experiments were conducted. In each group, values of A, R

and V were held constant and X was varied from 10 to 0.01.

Figure 4.1 shows the best fit y plotted against 1/x for

each of the simulation groups. Also plotted is a horizontal
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line intersecting the Y-axis at the value given by equation

(4.1).

For these simulations, it appears that equation (3.12)

holds as X > 0.

It is noted that X = means that the target never

changes course except when reflecting off the area

boundaries

.

C. LIMIT OF y AS irR
2

- A

2From equation (3.12) we see that y -*• °° as irR - A,

which implies that PND(t) + for t > 0. This is as would

be expected.

D. ASYMPTOTIC APPROACH TO DIFFUSION MODEL

As stated before, when the ratio of the characteristic

length of the search area to the mean segment length of the

random tour ( ^~A/V(1/X)) becomes large, we find that the

random tour model approaches the asymptotically equivalent

2diffusion model with a diffusion constant V /X. This is

consistent with equation (3.12). Since by taking the limits

of both sides of (3.12) as ( ^A?V(1/X)) * » we get

24.7 RV 2

Lim y =

^PVV+- (A - ttR
2

)

1
'
5
X

This is the value of 6 given by equation (2.5) for a

2diffusion model when the diffusion constant is V /x.
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E. ASYMPTOTIC APPROACH TO RANDOM SEARCH MODEL

The random tour model of Koopman [Ref. 7] predicts that

the detection rate of a randomly moving target is 2RV/A.

As \A x/v * 0, the model presented here results in a

detection rate of

2.0748 RV fA

(A - ,R
2

)

3/2

2For small ttR /A these two expressions are nearly equal.

F. LIMIT OF y AS V +

By taking the limits of both sides of equation (3.12) as

V * we get

Lim y =

V+0

This means that for V = 0,

PND(t) = 1 - irR
2/A , t > ,

which is as would be expected.

G. SENSITIVITY ANALYSIS

Figure 4.2 illustrates how equation (3.13) behaves as

the independent variables A, V, R and X are varied one at a

time. The base case considered was:
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A = 10,000 nm
2

,

V = 10 nm/hr,

X = 1 hr
_1

,

R = 10 nm,

t = 20 hr

Equation (3.13) is seen to be an increasing function of

A and X, and a decreasing function of V and R. This agrees

with intuition.

As A increases, the target has more area in which to

hide. So PND will increase.

As V or R increases, the target will be more likely to

encounter the detection disk. So PND decreases.

And as X increases, the target tends to remain closer to

its starting position. So PND will increase.

H. FINAL VERIFICATION

There exist no actual data available from real life

observations. Therefore, the output of RATSIM was used for

final verification of the model.

To achieve this purpose 47 combinations of different

values of the independent variables A, V, R and X were used

as input to both simulation program RATSIM and the proposed

analytical model given by equation (3.13).

These 47 experiments were classified into four groups,

where in each group only one parameter was varied while the
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2
others were kept at the base case value (A = 10000 nm , V =

10 nm/hr, R = 10 nm and X = 1 hr~ ). The outputs of these

different experiments are displayed in Table 4.1.

By looking carefully into the values displayed in Table

4.1, we observe that there is a little difference between

the values obtained from simulation and the corresponding

values estimated by the proposed analytical model, except

for large values of x (x > 20), and for large values of

irR
2/A (ttR

2/A > 0. 3) .

So, we can say that the proposed analytical model is

reasonable for the realistic values of the problem

independent variables (A, V, R and X) used in antisubmarine

warfare (ASW)

.

Figures 4.3 and 4.4 show a comparison of PND(t)

generated by RATSIM and the analytical model for

representative values of the independent variables. For

many cases the fit is so close that the curves are nearly

Indistinguishable.
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TABLE 4. 1

VARIATION OF y AND | MAX A|* WITH VARIATION IN THE
INDEPENDENT VARIABLES

(1) (2) (3) (4)
Vary A Model y Simulated y |Max a|

A = 400 nnr 4.8 2.587 0.08
0.418 0.0305
0.117 0.0301
0.0461 0.0225
0.0278 0.0165
0.0193 0.011
0.0145 0.012
0.0117 0.01
0.00975 0.015
0.00825 0.013
0.00721 0.0123
0.00625 0.015
0.00466 0.016

400 nnr 4.8
900 0. 388

2000 0.112
4000 0. 0455
6000 0.0276
8000 0. 0194

10000 0.0147
12000 0.0118
14000 0.00972
16000 0.00823
18000 0.0071
20000 0. 00622
25000 0.00468

Vary R

. 5 nm 0.00352
5 0.0072

10 0. 0147
15 0.0235
20 0. 0343
25 0.0487
30 0. 0693
35 0.1
40 0. 16
50 0.706

0.00398 0.047
0.00738 0.0345
0.0145 0.012
0.0229 0.013
0.0338 0.011
0.048 0.017
0.0683 0.0216
0.0986 0.032
0.15 0.041
0.308 0.07

Max A|: The maximum absolute difference between PND(t)
estimated by simulation and PND(t) estimated by
the analytical model at the same t, over the
whole experiment period (TMAX)

.
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TABLE 4.1 (CONTINUED)

(1) (2) (3) (4)

Vary V

V = 2.4 nm/hr 0.00156 0. 00177 0.0323
5 0.00527 0.00526 0.0244

10 0.0147 0.0145 0.012
15 0.025 0.0251 0.014
20 0.0355 0.0356 0. 012
25 0.0462 0.0472 0.013
30 0.057 0.0582 0. 021
35 0.06773 0.0689 0.014
40 0.0785 0.0801 0. 019
50 0.1 0.11 0.0305

100 0. 2088 0.2205 0.0329
200 0.4268 0.446 0.017

Vary X

X = 0. 1 hr A
0. 0209 0. 0224 0.0217

0.2 0.02004 0.0217 0.0162
0.4 0. 0184 0.0196 0.0154
0.6 0.017 0.0168 0.014
0.8 0.0158 0.01579 0.0092
1 0.0147 0.0145 0.012

1. 5 0. 0137 0. 0125 0. 016
2 0.0105 0.0102 0.0242
5 0.0051 0. 00512 0.037

10 0.00259 0.00294 0.0521
15 0.00173 0.00224 0.054
20 0.0013 0.00687 0.065

53



s

/a

CM -v. .C
E E E *v
c c c —

/ «

oo
o tn
vO IAN_ _ _ o

«

II II II II a

< > OC r<

a

«f

ro r©
(D0N4

ro

I
2

(Do* UXMtf

54



-C L.

CM V JC
F F F v.
c c c 1

ooo o o
CO — — *~

II II II II

< > DC .<

en

rH

w

c
o
•H
-P
fd

u
-H
M-l

•H
5-1

>

5-1

•H
fa

t-o »-o

axiNd COONd

55



V. PROBABILISTIC ANALYSIS OF THE MODEL

A. CUMULATIVE DISTRIBUTION FUNCTION (CDF)

Let T be the random variable for time of detection. And

let F(t) be the cumulative distribution function (CDF) for

T. That is,

P {T < t} = F(t) •

The model presented here implies that F(t) can be

closely approximated by

F(t) = u(t) [1 - a e~ Yt ]
• (5.1)

where

u(t) is for t <_ and 1 for t >

It is noted that equation (5.1) satisfies the following

properties of a CDF:

1) Lim F(t) = 1,

t •+• °°

2) F(0) = 0,

3) F(t) > 0,

4) F(t) is a non-decreasing function (see Figure 5.1).
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F(t)

\-*<

f(t)l

<X

^_u(t) [1 - a"
Yt

]

CDF vs. Time Time t (hour)

u(t) aye"
Yt

+ 5(t)(l - a)

Density Function vs. Time Time t (hour)

Figure 5.1 Variation of CDF and Density Function with Time
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B. DENSITY FUNCTION

By taking the first derivative of F(t) with respect to

time, we can derive the density function (f(t)) for T as

follows:

f(t) = dF(t)/dt

= U(t) (a Y e"
Yt

) + 6(t)(l - a) . (5.2)

where

6 (t) is the Dirac 6-function.

C. EXPECTED VALUE OF DETECTION TIME

The expected detection time E[T] can be derived as

follows

:

E[T] =
J [1 - F(t) ]dt

/ [1 - u(t) (1 - ae Yt
) ]dt

ae Yt dt

Y
* (5.3)



Replacing a, y by their expressions given by equations

(3.2), (3.12) respectively we get:

Em = (1 . 3jt!,i (i^i^
J

24.7 RV 2
[ (exp(-0.084 -^A) )

- 1]

(5.4)

This equation shows how E [T] varies with the problem

independent variables A, R, V and X. The variation of E[T]

with each of these variables is indicated in Figure 5.2.

D. CONDITIONAL CDF

If we assume that there will be no detection at the

beginning of the search period, we may derive the following

conditional CDF (F (t) )

:

F
Q
(t) = P {Detection by time t | no det. at t =

+
}

= P {T < t | T > 0}

(5.5)
P (T > 0, T < t) P(0 < T < t)

P (T > 0) P (T > 0)

If we substitute t = in (5.1) we get

F(0
+

) - 1 - a . (5.6)

So ,

59



60



P (0 < T < t) = F(t) - F(0
+

)

= (1 - ae
Yt

) - (1 - a)

= a(l - e
Yt

) . (5.7)

Also ,

P(T > 0) = F(0
+

)

= 1 - F(0
+

)

= a . (5.8)

Substituting (5.7) and (5.8) into (5.5), we get

F
Q
(t) = (1 - e

yt
) . (5.9)

This function (5.9) is a CDF for an exponential

distribution with parameter y (an expression for y is given

by (3.12)).

E. CONDITIONAL EXPECTED VALUE OF DETECTION TIME

The conditional expected first detection time E[T
Q

] can

be defined as follows:

E[T
Q ] = E [T

| no detection at t = 0]

61



/ F n (t) dt

(5.10)

F. CONDITIONAL DENSITY FUNCTION

Finally, the conditional density function (f
Q
(t)) can be

derived as follows:

f (t)

dF
Q
(t)

dt

= y e
-Yt

(5.11)

If we compare (5.3) and (5.10), we will observe that

a— < — , since a < 1 for R > 0.
Y Y

This implies that the conditional expected first detection

time is greater than the unconditional one. This is

reasonable, since in the unconditional case we have an

opportunity to detect the target at time . This

conclusion is demonstrated clearly by comparing F(t) and

F„(t) as illustrated in Figure 5.3, where we always find

that F
Q
(t) is less than F(t) at any value of t, except at

t - - where F(t) = F
Q
(t) = 1.
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APPENDIX

RATSIM COMPUTER PROGRAM

In order to give access to the logic used in building

the simulation model RATSIM, a complete program listing is

included in this appendix following the list of variables

used in the simulation model.

LIST OF VARIABLES

The variables used in the simulation model are listed

below according to their first appearance in the program:

R = Radius of searcher detection disk in nautical
miles

V = Speed of target in nautical miles per hour

Inc = Time increment for each discrete step in
minutes

REP = Number of replications

TMAX = Detection period in minutes

SUM(I) = Number of detections at time increment I

HIST(I) = Accumulative number of detections up to
increment I.

POSX = X component of target's position

POSY = Y component of target's position

XS = X component of target's starting position

YS = Y component of target's starting position

ANG = Course 9 in radians
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TLEG = Time leg for each segment

D = Distance between the target location and the
center of the detection disk

XN = X component of the target's new position

YN = Y component of the target's new position

PROBD = Probability of detection

PROBS = Probability of non-detection

A = 1 - nR
2
/A (a)

B = Detection rate (y)
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Q ****************************************** ***************
C *PROGRAM NAME: RATS I

M

*

C *THIS PROGRAM SIMULATES 2-DIMENSIONAL RANDOM-TOUR MODEL *

Q *********************************************************
REAL INC , L , L2 , LAMBDA
INTEGER REP,CTR,TIME,SUM(8000), HIST(8000)
DIMENSION XS ( 2500 ),YS( 2500) ,TEXP(3000) ,TH(3000)
DIMENSION TI(8000) , PROBD( 8000) , PROBS ( 8000)
DIMENSION Y(8000) ,Z(8000)
DOUBLE PRECISION DSEED
DSEED=89456.D0
NR=2400
CALL GGUBS (DSEED, NR, XS)
DSEED=73452.D0
NR=2400
CALL GGUBS (DSEED, NR, YS

)

R=10.
AREA=10000.
V=10.
LAMBDA=1.
INC=3.
REP= 2400
TMAX=100*60
L=AREA**.5
L2=L*2
SER=L/2

.

MAXCTR= I NT ( TMAX/ INC ) +

1

DO 10 I=1,MAXCTR
SUM(I)=0
HIST(I)=0

10 CONTINUE
DO 50 1=1, REP
DSEED=6095 . D0*DBLE( FLOAT ( I )

)

NR=3000
CALL GGUBS (DSEED, NR, TH)
DSEED=22 1 1 . 0D0*DBLE ( FLOAT ( I )

)

XM=1/LAMBDA
NR=3000
CALL GGEXN(DSEED,XM,NR,TEXP)
POSX=XS(I)*L
POSY=YS(I)*L
TIME=0
CTR=1
DO 40 J=l,3000
ANG=6.2832 *TH(J)
TLEG= TEXP(J)*60
N=INT(TLEG/INC)
DO 35 M=1,N

D=( ( (POSX-SER)**2)+( (POSY-SER)**2) )**.5
C CHECK FOR DETECTION

IF(D.LE.R) GO TO 45
IF (CTR.GT.MAXCTR) GO TO 48

C CURRENT POSITION OF THE TARGET
XN=POSX+V*( INC/60 )*S IN (ANG)
YN=POSY+V* ( INC/60 ) *COS ( ANG

)
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C CHECK FOR REFLECTION
15 IF(XN) 16,16,17
16 XN=-XN

ANG=6.2832-ANG
17 IF(XN-L) 19,18,18
18 XN=L2-XN

ANG=6.2832 -ANG
19 IF(YN) 20,20,21
20 YN=-YN

ANG=3.1416-ANG
21 IF(YN-L) 30,22,22
22 YN=L2-YN

ANG=3.1416-ANG
30 POSX=XN

POSY=YN
CTR=CTR+1
TIME=TIME+INC

35 CONTINUE
40 CONTINUE
45 INDEX=INT(TIME/INC)+1

SUM( INDEX)=SUM( INDEX)+1
48 CONTINUE
50 CONTINUE

HIST(1)=SUM(1)
PROBD ( 1 ) =FLOAT ( HI ST ( 1 ) ) /FLOAT ( REP

)

PROBS(l)=l -PROBD(l)
TI(1)=0.0
DO 300 I=2,MAXCTR

HIST(I)=SUM( I)+HIST(I-1)
PROBD ( I

) =FLOAT ( HI ST ( I ) ) /FLOAT ( REP

)

PROBS(I)=l -PROBD(I)
TI( I )=FLOAT(I-l)*( INC/60)
WRITE(6,250) TI ( I ) , PROBS ( I

)

250 FORMAT (2X,F6. 2, 2X,F16. 11)
300 CONTINUE
Q *******************************************************
C THE FOLLOWING SUBROUTINE IS TO ESTIMATE THE DETECTION
C RATE"B" AND THE COEFFICIENT "A" BY USING A NUMERICAL
C METHOD

.

DO 350 I=1,MAXCTR
Y(I)=0
Z(I)=0

350 CONTINUE
DO 380 I=1,MAXCTR
IF(PROBS(I) .LE.O) GO TO 390
Y(I)=PROBS(I)
Z(I)=TI(I)

380 CONTINUE
390 K=I

SZ=0
SZ2=0
SLY=0
SLYZ=0
SLY2=0
DO 400 J=1,K
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SZ=SZ+Z(J)
SZ2=SZ2+Z( J)**2
IF(Y(J) .LE.O) GO TO 500
SLY=SLY+ALOG(Y( J)

)

SLYZ=SLYZ+Z( J)*ALOG(Y( J))
SLY2=SLY2+ALOG(Y( J) )**2

400 CONTINUE
500 U1=(SZ2*SLY)-(SZ*SLYZ)

G=(K*SZ2)-(SZ**2)
U2=(K*SLYZ)-(SZ*SLY)
F=U1/G
B=U2/G
A=EXP(F)
WRITE(6,*) A,B
STOP
END
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